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Multilayer shell theory, constructed on the basis of static or kinematic hypotheses, 
has acquired considerable popularity [1-5]; this is explained by the physical clarity 
of the approach and the relative simplicity of solving specific practical problems. However, 
existing approaches do not make it possible to describe a simultaneously nonuniform distribu- 
tion of transverse tangential stresses through the thickness of a packet, and to provide ful- 
filment of the continuity condition for these stresses at the interface of layers and boundary 
conditions at the external surfaces of a shell. 

In this work on the basis of independent kinematic [I] and static [6] hypotheses, a 
mathematically substantiated variant of multilayer anisotropic shell theory has been construc- 
ted, taking the factors mentioned above into consideration to an equal extent. As an example, 
the problem is considered of an axisymmetrically stressed-strained state for a crosswise re- 
inforced cylindrical shell. 

i. We consider a shell of thickness h composed of N elastic anisotropic layers of con- 
stant thickness h(k)(k = i, 2, ..., N). As a reduction surface we select the internal boundary 
surface ~ which is referred to a set of curvilinear coordiantes x i. Here and subsequently, 
all indices, with the exception of k and m, take values of 1 and 2. Coordinate z will be 
read along normal n to the reduction surface. 

The position of an arbitrary point in an undeformed shell is determined by the radius 
(k)rl u(k)n where vector R = r-~ zn, and in a deformed shell by the radius vector R*=R+u~ + a , 

r is radius vector of the projection of the Point on surface ~; r~ and r f` are vectors of 
the main and reciprocal coordinate bases; ui(k) are covariant tangential displacement vector 
components; u3(k) is normal displacement of a point in the k-th layer. 

In surfaces separating layers z = 5(m ) (m = i, 2 ..... N - i) the continuity condition 
should be fulfilled for transverse stress tensor components oil), o~) and the displacement 
vector component 

~3 ~a 3a aa (i i) (~(m) = O(m+l),  O(ra) = (I(m+l);  

U{ = (m+' ,  = ( 1 . 2 )  

Bounda ry  c o n d i t i o n s  a t  t h e  i n t e r n a l  s u r f a c e  o f  t h e  s h e l l ( z  = 0) a r e  p r e s e n t e d  in  t h e  fo rm 
is { a.~ 

~ = Po, ~o) = qo. (1.3) 
At the external surface of the shell(z = h) boundary conditions have the form 

i3 { 33 
~(N) = Pl, cRN) = ql. (1.4) 

Subsequently we use kinematic hypotheses suggested in [i]. According to [i] the mater- 
ial of each layer is incompressible in the transverse direction and the tangential displacement 
vector components of the k-th layer of the shell are linear in relation to the normal of co- 
ordinate z : 

(,,) ~k), u(3h) u~ h) = vl + (z -- 5(h-,) = ~v. (i. 5) 

Here v{ k): \are tangential displacements for points of the "lower" boundary surface of the k-th 

layer;*~%i k} are increments in tangential displacements within the k-th layer. 

From continuity for displacements with transfer through the layer interface and rela- 
tionship (1.5), it follows that 

N 
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where v! ~) = ui; ~(km)  are elements of a square matrix with size N • N for which the sum of 
elements of the k-th line equals zero. We determine the matrix in the form 

I -O 0 0 . . .  0 0 -I  
h(~) - -  6(~) 0 . . .  0 

I h ( 1 ) h ( ~ )  - - 8 ( ~ , ) . . .  O .  : [ 

[_h(l) h(2) h(3) . . .  h(2v-1) - -  6(N--O_ 

It is also noted that due to the hypothesis about the incompressibility of shell layers in 
the transverse direction, the second continuity condition (1.2) is fulfilled automatically. 

For transverse tangential stresses we take an independent approximation [6] by general- 
izing it in the case of boundary conditions (1.3) and (1.4): 

a{~) = p~ + zh -~ (Pl - -  P~) + f(o) (z) ~o) + 1(~) (~ ~ ) ,  ( 1 .7  ) 

w h e r e  f ( o ) ( Z ) ,  f ( k ) ( Z )  a r e  c o n t i n u o u s  f u n c t i o n s  in  t h e  s p a c e  [0 ,  h]  s a t i s f y i n g  t h e  c o n d i t i o n s  

( 1 . 8 )  
~o)(0) = ~o)(h) = O, ](~)(z) = O, z ~ [0, ~(h_l)] O [~(h), h]. 

No limitations are imposed below on the form of functions f(0)(z), f(k)(Z), and only 
in solving specific problems shall we assume that they are square parabolas. It can be seen 
from relationships (1.7) and (1.8) that transverse tangential stresses are continuous functions 
of the normal coordinate everywhere in region [0, .h]" In this way, at boundary surfaces z = 
0 and z = h, they take prescribed values p0 ~ and p~. 

Thus, static hypothesis (1.7) makes it possible to describe the effect of nonuniform 
distribution of transverse tangential stresses through the thickness of a packet without dis- 
rupting the continuity condition (i.i) and boundary conditions (1.3) and (1.4). 

~(k) ~(k) 2sis(k) 2. Tangential tensor components for strains ~x~ and transverse shears .i ~ = 
in the case of the simplest nonlinear variant of shell theory in a quadratic approximation 
are determined directly by the equation 

.(h) * * 
~ij = R,~R,j - -  R,~R,j = Viuj + V~ul - -  2b~jw + 010j + 

+ + vj i + + - - brV u  + 

\ N 

fft=l J 
3~(~) R ' R *  

(2.1) 

Here an index following a comma indicates differentiation with respect to the corresponding 
coordinate; V i is a symbol for covariant differentiation at surface ~; ail and b~ are 
coefficients for the first and second quadratic forms of the reduction surlace, assum- 
ing that in relationships (2.1) $! k) = 8 i and considering the properties of the matrix mentioned 
above, [!~(km)II , we arrive at a strain relationship of the classical Kirchhoff-Love theory 
[7]. If it is accepted that $(k) = $i' then we obtain a deformation relationship for shell 
theory of the Timoshenko type ~8]. 

Equilibrium equations for the shell are derived from the mixed variation principle of 
Reissner 

~U = 5A~ + 5A$, ( 2 . 2 )  

which opens up a natural path for reducing the three-dimensional problem of elasticity theory 
to a two-dimensional problem of shell theory resolving on the way the well-known contradictions 
contained in the original system of independent kinematic and static hypotheses (1.6) and (1.7). 
Here A M is the work of external surface loads; A~ is the work internal contour forces, 
and variation of functional U is presented in the form 

6U = ~a(h)oe~ + + o(k)oy~a + ~ s  u(k) 
8( ) 
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where g and a are discriminants of the spatial metric tensor and metric tensor of the reduction 
surface; W(k ) is elastic potential of the k-th layer of the shell: 

Woo = - ~ - ~  ~ v  ( ~ ) ( ~ ) +  "~~ ~ g / a  = i - - 2 H z q :  Kz~; ( 2 . 4 )  

a(~) , c(~) are tangential and trans- H and K are average and Gaussian curvature of surface ~; ~ ~ 
verse shear compliances of the k-th layer. It is noted for information that c~) = 5aas6s(k). 

By introducing W(k ) from (2.4) into Eq. (2.3), after a standard variation procedure we 
obtain an expression for variation of functional U: 

= { ( -  + + ( -  ,u, + 

N N 6(h) 

+ Z ( -  v~r + Og)) ~(~) 
h=:t h=~ 6(h_ D 

+ dst; 
p h=l 

N N N 

T ~ ~] ~r Q~ ~ ~ = T(k), = Y, S ~ Q(~), Z ---- S(k),  
h = l  k=l k=l 

N 

N ~=Q~_ ~ ~ ~ ~ 
m = l  

6(h) 6(h) 

= - -  zo~o(~)?  d z ,  S(~) = o(~) dz, 

6(h-- D 6@-- D 

U ~j j ~a i ~3 dz = - -  z u ~ o ( ~ ) 7  z = 

6(,~.-- 1) 6(h--1) 

(2.5) 

( 2 . 6 )  

. . . ,  ~?> ( Tw ...~ ~), uv~ are physical components of the corresponding tensors and vectors in 
coordinate system st, sv, connected with boundary contour F). 

By calculating the variation of work for the external loads and substituting the values 
found 5A~ , 6A~ together with 5U from (2.5) in variation Eq. (2.2), after simple transforma- 
tions according to [8,9], we obtain an equation for shell equilibrium in specific forces 
and moments: 

V ~ T  ~ b ~ N ~ ~ - -  c~ = Po - -  P , ,  Vc* N ~  + ba o~T~~ = qo - q* ,  

p , = ( t - - 2 h H  + K h  ) p ~ ,  q , - - - - ( l - - 2 h H + K h  ~)q~,  

(2.7) 

under conditions corresponding to them: 

$ �9 $ 

T~ v = Tv* v o r  u v  = U v ,  T v t  = T v t  o r  u t --~ u t 

N~3 = Q:3 o r  w = w * ,  

and also, taking account of (2.4), the integral relationships 

rr 6( k ) 

(?~3 - -  ei~ o(h)/[(0) (z) ( t  - -  2 z H  + K z  2) dz = O, 
h=l  6(h_l)  

~ ~ 3  - -  ~ ~,(h)l f(h) (z) (t - -  2 z H  + Kz2i  dz = O. 
~(h--]) 

(2.8) 
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As can be seen from Eq. (2.8) elasticity relationships for transverse tangential stresses 
are fulfilled integrally through the thickness of the k-th layer and simultaneously throughout 
the thickness of the packet, and hereby a nonlinear variation of multilayer anisotropic shell 
theory is constructed which is not contradictory from the point of view of the mixed variation 
principle, taking account of the nonuniform distribution of the stress tensor component 
throughout the thickness of the shell. 

3. We consider axisymmetrical deformation of a thin multilayer anisotropic shell of 
rotation. Surface ~ relates to the curvilinear orthogonal coordinates ~l and ~2 read along 
the line of principal curvature. In this case relationships (2.1), (2.6)-(2.8) are consider- 
ably simplified. After neglecting terms kiz in comparison with unity, whose retention does 
not increase the accuracy of the final results, deformation relationships (2.1) are written 
in the form 

.N 
(~), ~ v( ,~)  zK(h) e(U~ E(U) + ~ + (~j), 

m = l  

E11 -- "~I ~ + kl'w -}- -~- 0B)' E(22) = k=w - -  pu(1 ) -}- -~- 0(2), 

dR(h) 
~.(h). ~ i v(1) ~1 du(2) @ ~)U(2) + 0(1)0(2) ' 1~(11) 2 E ( r , ) =  AI do:~- A 1 dc~ 1 

K(h) , ~p . (h )  
(2 '2 )  ----- - -  V ' P ( 1 ) ,  

0(l ) -- ]qu(O 
dm 

A l do~ 1 ' 

d~(hO ~a(h) 
1 ~'(2) jr_ [dlJ(2)' 

2KI~) = A1 d~ 1 

i dA2 
0(2 ) - -  k2u(2), P ----- A1A2 d ~  1 ' 

(3.1) 

where e ~ . . . . ,  0(i ~ are physical components corresponding to tensors and vectors; k i is 
curvature'~a':ol coordinate lines; A i are Lam~ parameters. Similar simplification should be car- 
ried out with equilibrium Eqs. (2.7), specific forces and moments (2.6), and integral elasti- 
city relationships (2.8). 

The structure of the original equations for nonlinear multilayer anisotropic shell theory 
is quite complex. Accurate solutions can be obtained in rare cases, and therefore we shall 
aim at their numerical solution in a computer. With this in mind we introduce a vector for 
solutions with a size of 4N + 6: 

r h ( 1 )  .-:r-. ( N )  o h ( l )  .~ . (N) .  Y = [TOm), N(1), " 4 - ' ( 1 1 ) ,  { i I , ~ ( 1 1 ) ,  T ( I ~ ) ,  ~ ( [ 2 ) ,  �9 { �9 , ~ ( l ~ )  , 

RO) cAN) R(1) n(N) lm 
U(1)~ 11~ P ( 1 ) ,  �9 �9 � 9  P ( i ) ,  u (~) ,  v (2 ) ,  �9 � 9  {3(2) ] �9 

(3.2) 

According to Eq. (3.2) construction of the vector for solutions makes it possible to present 
the resolvent equations of the problem in matrix form. The normal set of simple differential 
equations has the form 

I dY F(%, Y) (3.3) 
A I d~ I 

(expressions for vector component F are not provided here). The first 2N + 3 equations of 
system (3.3) follow from equilibrium Eqs. (2.7) taking account of the equality S(ii) = T(ii), 
and the other 2N + 3 equations flow directly from deformation relationships (3.1). Tran - 
verse specific forces Q{~I figuring in the right-hand parts of set (3.3) may be expressed 
in terms of vector comp6n~nts for solutions by means of integral elasticity relationships 
( 2 . 8 ) .  

An algorithm for solution of the formulated problem was realized in the form of a collection 
of standard procedures in algorithmic language PL/I(O) All of the numerical calculations 
were carried out on an ES 1060 computer. 

4. As an example we consider a crosswise reinforced cylindrical shell, one of whose ends 
is displaced by a prescribed distance u 0 . The layers are packed in an antisymmetrical way with 
reinforcing angles 7k = (--l)k-17 �9 The problem is realized numerically for a two-layer shell 
with geometric parameters h = 5 mm, R 0 = s = i00 mm (R0 is radius, Z is shell length), prepared 
from a boron-epoxy composite. The mechanical properties of the composite are presented in 
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[i0]. It was ass~ed that the shell ends are rigidly embedded, and axial displacement u 0 = 
in. 

Shown in Fig. 1 is the distribution of transverse tangential stresses through the thick- 
ness of the packet in a section of the shell located at a distance of I0 mm from the end with 
a reinforcement angle ~ = 30 ~ . Numerical results represented by solid lines were obtained 
by integrating the normal set of simple differential equations (3.3). Broken lines correspond 
to calculations based on Timoshenko-type shell theory [8]; broken-dotted lines are the refined 
Timoshenko theory [9], on whose basis static hypothesis (1.7) is also suggested, although the 
order of resolvent equations in this theory does not depend on the number of layers~ Points 
are the results of solving the problem by the finite element method [ii] where the shell was 
considered from the position of nonlinear elasticity theory. As can be seen, stresses o(13) 
are distributed through the thickness of the packet by a rule close to parabolic, although 
at the interface of layers considerable deviation is observed from the square parabola rule. 
As far as stresses o(23) are concerned, they generally have a nonparabolic distribution 
which is postulated in the overwhelming majority of refined theories for multilayer shells. 
In the problem being considered, their distribution rule is very close to sinusoidal. The or- 
der of the values of o(13), 0(23)is the same, which points to the considerable contribution 
of the effect of anisotropy to the overall picture of the stressed-strained state of a cross- 
wise reinforced shell. It is curious to note that the refined Timoshenko theory [9] charac- 
terized quite well the rule for distribution of transverse tangential stresses o(13). The 
values obtained for these stresses are so close to those found by means of the theory developed 
here that they agree with an accuracy up to the scale of representation. 

In conclusion we analyze the nature of change in transverse tangential stress 0(23) 
curves in relation to reinforcement angle y. Numerical results are presented in Fig. 2. It 
can be seen that curves for stresses 0(23) depend markedly on reinforcement angle, and the nature 
of distribution for these stresses through the thickness of the shell undergoes a qualitative 
change. 

LITERATURE CITED 

i. E.I. Grigolyuk and P. P. Chulkov, "Theory of viscoelastic multilayer shells with rigid 
fillers under finite deflections," Zh. Prikl. Mekh. Tekh. Fiz., No. 5 (1964). 

2. V.V. Bolotin and Yu. N. Novichkov, Multilayer Structural Mechanics [in Russian], Mash- 
inostroenie, Moscow (1980). 

3. A.O. Raskazov, "Multilayer orthotropic flat shell theory," Prikl. Mekh., 12, No. ii 
(1976). 

4. A.N. Andreev and Yu. V. Nemirovskii, "Theory of elastic multilayer anisotropic shells," 
Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 5 (1977). 

5. G.M. Kulikov, "Theory of multilayer flat shells of finite deflection," Izv. Akad. Nauk 
SSSR, Mekh. Tverd. Tela, No. 3 (1979). 

6. E.I. Grigolyuk and G. M. Kulikov, "Theory of elastic layered anisotropic shells," Dokl. 
Akad. Nauk SSSR, 275, No. 5 (1984). 

7. K.F. Chernykh, Linear Shell Theory, Vol. 2 [in Russian], Izd. LGU, Leningrad (1964). 

749 



8. E.I. Grigolyuk and G. M. Kulikov, "Numerical solution of statics problems for geometri- 
cally nonlinear anisotropic multilayer shells of rotation," Mekh. Komp. Mater., No. 3, 
 198l). 

9. E . Y .  G r i g o l y u k  and G. M. K u l i k o v ,  "Des ign  o f  r a d i a l  t i r e s  based  on t h e  g e n e r a l i z e d  
Timoshenko t h e o r y , "  Zzv. Akad. Nauk SSSR, Mekh. T v e r d .  T e l a ,  No. 4 ( 1 9 8 4 ) .  

i0. G.M. Kulikov, "Effect of anisotropy on the stressed state of multilayer reinforced 
shells," Prikl. Mekh., 22, No. 12 (1986). 

ii. P. Ya. Nosatenko, "Study of the geometrically nonlinear stressed-strained state of ani- 
sotropic shells of rotation by the finite element method," Dep. VINITI 21.03.84, No. 
1526-84, Moscow (1984). 

OPTIMIZATION OF THE STRUCTURE OF ROLLED SHELLS 

S. V. Lavrikov and A. F. Revuzhenko UDC 539.3 

i. In [I], the direct problem of determining the stressed state of a cylindrical tube 
prepared by rolling a thin flexible shell is considered. The elastiplastic model for deforma- 
tion of these structures is the following closed set of equations: 

oo,% 0,% o,% - ~ 
- -  - -  + O, 

0)~1 -}- a~,Ok 2 % 

0~ 0o% 2oO o; 

+ + ~ 

ow~ t - - v o o  _ ~ oo ' = 

a2O~, 2 q- a 2' = "p, " T ~  

- - + - -  - - ' - -  
d~'l a20~2 "as ~ ( 1 . 3 )  

(1.1) 

( 1 . 2 )  

Here (~i, k2) is the orthogonal curvilinear coordinate system; line XI = const is directed along the 
contact of shell layers; a 2 = X1 + $X2 + R0 cos 6 is Lame parameter; $ = R 0 sin 6; R 0 is tube 
internal radius; 6 is slope of spiral X2 to circle r = R0; w?, o?. (i, j = i, 2) are displace- I. 13 . 
ment vector components and the stress tensor in coordinates (XI, 12); ~ is shear modulus; 

is Poisson's ratio. Set (i.i) are normal equilibrium equations in curvilinear coordinates; 
(1,2) are equations determining the elastic change in dimensions of an elementary volume in 
directions 11 and 12; (1.3) characterizes the overall shear strain of an element of the mate- 
rial; the first term in the right-hand part is elastic deformation of shell layers; F is slip- 
page of layers over each other. This stressed-strained state depends markedly on the form 
of function F, i.e., on the conditions at the contacts between shell layers. This situation 
may be used for optimizing the structure as a whole. 

Let the shell be intended for operation at high internal pressures when as a best per- 
formance criterion we take 

p-+ max (1.4) 

(p is the value of internal pressure). It is noted that this criterion should be fulfilled 
with prescribed internal pressure, material parameters ~, v, shell layer thickness h = 2~, 
and fulfillment of certain inequalities guaranteeing material integrity. Thus, if Eq. (1.3) 
is excluded from the closed set (i.e., F is considered as a controlling function), then best 
performance condition (1.4) may be used in order to obtain equations closing set (i.i), 
(1.2). After solving it from Eq. (1.3), where displacements and stresses are already known, 
we determine function F, which provides fulfillment of criterion (1.4). This is the general 
scheme for solving the problem. 
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